Kamis, 03 November 2011

Hutan

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Sebuah hutan di Pulau San Juan, Amerika Serikat.
Hutan adalah sebuah kawasan yang ditumbuhi dengan lebat oleh pepohonan dan tumbuhan lainnya. Kawasan-kawasan semacam ini terdapat di wilayah-wilayah yang luas di dunia dan berfungsi sebagai penampung karbon dioksida (carbon dioxide sink), habitat hewan, modulator arus hidrologika, serta pelestari tanah, dan merupakan salah satu aspek biosfer Bumi yang paling penting.
Hutan adalah bentuk kehidupan yang tersebar di seluruh dunia. Kita dapat menemukan hutan baik di daerah tropis maupun daerah beriklim dingin, di dataran rendah maupun di pegunungan, di pulau kecil maupun di benua besar.
Hutan merupakan suatu kumpulan tumbuhan dan juga tanaman, terutama pepohonan atau tumbuhan berkayu lain, yang menempati daerah yang cukup luas.
Pohon sendiri adalah tumbuhan cukup tinggi dengan masa hidup bertahun-tahun. Jadi, tentu berbeda dengan sayur-sayuran atau padi-padian yang hidup semusim saja. Pohon juga berbeda karena secara mencolok memiliki sebatang pokok tegak berkayu yang cukup panjang dan bentuk tajuk (mahkota daun) yang jelas.
Suatu kumpulan pepohonan dianggap hutan jika mampu menciptakan iklim dan kondisi lingkungan yang khas setempat, yang berbeda daripada daerah di luarnya. Jika kita berada di hutan hujan tropis, rasanya seperti masuk ke dalam ruang sauna yang hangat dan lembab, yang berbeda daripada daerah perladangan sekitarnya. Pemandangannya pun berlainan. Ini berarti segala tumbuhan lain dan hewan (hingga yang sekecil-kecilnya), serta beraneka unsur tak hidup lain termasuk bagian-bagian penyusun yang tidak terpisahkan dari hutan.
Hutan sebagai suatu ekosistem tidak hanya menyimpan sumberdaya alam berupa kayu, tetapi masih banyak potensi non kayu yang dapat diambil manfaatnya oleh masyarakat melalui budidaya tanaman pertanian pada lahan hutan. Sebagai fungsi ekosistem hutan sangat berperan dalam berbagai hal seperti penyedia sumber air, penghasil oksigen, tempat hidup berjuta flora dan fauna, dan peran penyeimbang lingkungan, serta mencegah timbulnya pemanasan global. Sebagai fungsi penyedia air bagi kehidupan hutan merupakan salah satu kawasan yang sangat penting, hal ini dikarenakan hutan adalah tempat bertumbuhnya berjuta tanaman.[1]

Daftar isi

 [sembunyikan

Bagian-bagian hutan

Hutan Slurup di gunung Wilis pada sisi Kabupaten Kediri, tepatnya di daerah Dolo kecamatan Mojo. Hutan dengan banyak aliran air, berhawa dingin dan tingkat kelembaban rendah
Bayangkan mengiris sebuah hutan secara melintang. Hutan seakan-akan terdiri dari tiga bagian, yaitu bagian di atas tanah, bagian di permukaan tanah, dan bagian di bawah tanah.
Jika kita menelusuri bagian di atas tanah hutan, maka akan terlihat tajuk (mahkota) pepohonan, batang kekayuan, dan tumbuhan bawah seperti perdu dan semak belukar. Di hutan alam, tajuk pepohonan biasanya tampak berlapis karena ada berbagai jenis pohon yang mulai tumbuh pada saat yang berlainan.
Di bagian permukaan tanah, tampaklah berbagai macam semak belukar, rerumputan, dan serasah. Serasah disebut pula 'lantai hutan', meskipun lebih mirip dengan permadani. Serasah adalah guguran segala batang, cabang, daun, ranting, bunga, dan buah. Serasah memiliki peran penting karena merupakan sumber humus, yaitu lapisan tanah teratas yang subur. Serasah juga menjadi rumah dari serangga dan berbagai mikro organisme lain. Uniknya, para penghuni justru memakan serasah, rumah mereka itu; menghancurkannya dengan bantuan air dan suhu udara sehingga tanah humus terbentuk.
Di bawah lantai hutan, kita dapat melihat akar semua tetumbuhan, baik besar maupun kecil, dalam berbagai bentuk. Sampai kedalaman tertentu, kita juga dapat menemukan tempat tinggal beberapa jenis binatang, seperti serangga, ular, kelinci, dan binatang pengerat lain.
Mengapa hutan tampak tidak sama?
Iklim, tanah, dan bentuk bentang lahan di setiap daerah adalah khas. Sebuah daerah mungkin beriklim sangat basah, sedangkan daerah lain sangat kering. Daerah A mungkin bertanah rawa, daerah B sebaliknya bertanah kapur. Ada yang berupa gunung terjal, sementara yang lain merupakan dataran rendah.
Semua tumbuhan dan satwa di dunia, begitupun manusia, harus menyesuaikan diri dengan lingkungan tempat mereka berada. Jika suatu jenis tumbuhan atau satwa mampu menyesuaikan diri dengan lingkungan fisik di daerah tertentu, maka mereka akan dapat berkembang di daerah tersebut. Jika tidak, mereka justru tersingkir dari tempat ini. Contohnya, kita menemukan pohon bakau di daerah genangan dangkal air laut karena spesies pohon ini tahan dengan air asin dan memiliki akar napas yang sesuai dengan sifat tanah dan iklim panas pantai.
Sebaliknya, cara berbagai tumbuhan dan satwa bertahan hidup akan memengaruhi lingkungan fisik mereka, terutama tanah, walaupun secara terbatas. Tumbuhan dan satwa yang berbagi tempat hidup yang sama justru lebih banyak saling memengaruhi di antara mereka. Agar mampu bertahan hidup di lingkungan tertentu, berbagai tumbuhan dan hewan memang harus memilih antara bersaing dan bersekutu. Burung kuntul, misalnya, menghinggapi punggung banteng liar untuk mendapatkan kutu sebagai makanannya. Sebaliknya, banteng liar terbantu karena badannya terbebas dari sumber penyakit.
Jadi, hutan merupakan bentuk kehidupan yang berkembang dengan sangat khas, rumit, dan dinamik. Pada akhirnya, cara semua penyusun hutan saling menyesuaikan diri akan menghasilkan suatu bentuk klimaks, yaitu suatu bentuk masyarakat tumbuhan dan satwa yang paling cocok dengan keadaan lingkungan yang tersedia. Akibatnya, kita melihat hutan dalam beragam wujud klimaks, misalnya: hutan sabana, hutan meranggas, hutan hujan tropis, dan lain-lain.

[sunting] Macam-macam Hutan

Rimbawan berusaha menggolong-golongkan hutan sesuai dengan ketampakan khas masing-masing. Tujuannya untuk memudahkan manusia dalam mengenali sifat khas hutan. Dengan mengenali betul-betul sifat sebuah hutan, kita akan memperlakukan hutan secara lebih tepat sehingga hutan dapat lestari, bahkan terus berkembang.
Ada berbagai jenis hutan. Pembedaan jenis-jenis hutan ini pun bermacam-macam pula. Misalnya:

[sunting] Menurut asal

Kita mengenal hutan yang berasal dari biji, tunas, serta campuran antara biji dan tunas. Hutan yang berasal dari biji disebut juga ‘hutan tinggi’ karena pepohonan yang tumbuh dari biji cenderung menjadi lebih tinggi dan dapat mencapai umur lebih lanjut. Hutan yang berasal dari tunas disebut ‘hutan rendah’ dengan alasan sebaliknya. Hutan campuran, oleh karenanya, disebut ‘hutan sedang’.
Penggolongan lain menurut asal adalah hutan perawan (hutan primer) dan hutan sekunder. Hutan perawan merupakan hutan yang masih asli dan belum pernah dibuka oleh manusia. Hutan sekunder adalah hutan yang tumbuh kembali secara alami setelah ditebang atau kerusakan yang cukup luas. Akibatnya, pepohonan di hutan sekunder sering terlihat lebih pendek dan kecil. Namun jika dibiarkan tanpa gangguan untuk waktu yang panjang, kita akan sulit membedakan hutan sekunder dari hutan primer. Di bawah kondisi yang sesuai, hutan sekunder akan dapat pulih menjadi hutan primer setelah berusia ratusan tahun.

[sunting] Menurut cara permudaan (tumbuh kembali)

Hutan dapat dibedakan sebagai hutan dengan permudaan alami, permudaan buatan, dan permudaan campuran. Hutan dengan permudaan alami berarti bunga pohon diserbuk dan biji pohon tersebar bukan oleh manusia, melainkan oleh angin, air, atau hewan. Hutan dengan permudaan buatan berarti manusia sengaja menyerbukkan bunga serta menyebar biji untuk menumbuhkan kembali hutan. Hutan dengan permudaan campuran berarti campuran kedua jenis sebelumnya.
Di daerah beriklim sedang, perbungaan terjadi dalam waktu singkat, sering tidak berlangsung setiap tahun, dan penyerbukannya lebih banyak melalui angin. Di daerah tropis, perbungaan terjadi hampir sepanjang tahun dan hampir setiap tahun. Sebagai pengecualian, perbungaan pohon-pohon dipterocarp (meranti) di Kalimantan dan Sumatera terjadi secara berkala. Pada tahun tertentu, hutan meranti berbunga secara berbarengan, tetapi pada tahun-tahun berikutnya meranti sama sekali tidak berbunga. Musim bunga hutan meranti merupakan kesempatan emas untuk melihat biji-biji meranti yang memiliki sepasang sayap melayang-layang terbawa angin.

[sunting] Menurut susunan jenis

Berdasarkan susunan jenisnya, kita mengenal hutan sejenis dan hutan campuran. Hutan sejenis, atau hutan murni, memiliki pepohonan yang sebagian besar berasal dari satu jenis, walaupun ini tidak berarti hanya ada satu jenis itu. Hutan sejenis dapat tumbuh secara alami baik karena sifat iklim dan tanah yang sulit maupun karena jenis pohon tertentu lebih agresif. Misalnya, hutan tusam (pinus) di Aceh dan Kerinci terbentuk karena kebakaran hutan yang luas pernah terjadi dan hanya tusam jenis pohon yang bertahan hidup. Hutan sejenis dapat juga merupakan hutan buatan, yaitu hanya satu atau sedikit jenis pohon utama yang sengaja ditanam seperti itu oleh manusia, seperti dilakukan di lahan-lahan HTI (hutan tanaman industri).
Penggolongan lain berdasarkan pada susunan jenis adalah hutan daun jarum (konifer) dan hutan daun lebar. Hutan daun jarum (seperti hutan cemara) umumnya terdapat di daerah beriklim dingin, sedangkan hutan daun lebar (seperti hutan meranti) biasa ditemui di daerah tropis.

[sunting] Menurut umur

Kita dapat membedakan hutan sebagai hutan seumur (kira-kira berumur sama) dan hutan tidak seumur. Hutan alam atau hutan permudaan alam biasanya merupakan hutan tidak seumur. Hutan tanaman boleh jadi hutan seumur atau hutan tidak seumur.
| width="50%" align="left" valign="top" |

[sunting] Berdasarkan letak geografisnya:

[sunting] Berdasarkan sifat-sifat musimannya:

[sunting] Berdasarkan ketinggian tempatnya:

[sunting] Berdasarkan keadaan tanahnya:

[sunting] Berdasarkan jenis pohon yang dominan:

[sunting] Berdasarkan sifat-sifat pembuatannya:

Hutan Kota di Singapura

[sunting] Berdasarkan tujuan pengelolaannya:

Lereng gunung Arjuna di wilayah Sumberawan, kecamatan Singosari, kabupaten Malang
Dalam kenyataannya, seringkali beberapa faktor pembeda itu bergabung, dan membangun sifat-sifat hutan yang khas. Misalnya, hutan hujan tropika dataran rendah (lowland tropical rainforest), atau hutan dipterokarpa perbukitan (hilly dipterocarp forest). Hutan-hutan rakyat, kerap dibangun dalam bentuk campuran antara tanaman-tanaman kehutanan dengan tanaman pertanian jangka pendek, sehingga disebut dengan istilah wanatani atau agroforest.

[sunting] Jenis-jenis hutan di Indonesia

[sunting] Berdasarkan biogeografi

Kepulauan Nusantara adalah relief alam yang terbentuk dari proses pertemuan antara tiga lempeng bumi. Hingga hari ini pun, ketiga lempeng bumi itu masih terus saling mendekati. Akibatnya, antara lain, gempa bumi sering terjadi di negeri kepulauan ini.
Sejarah pembentukan Kepulauan Nusantara di sabuk khatulistiwa itu menghasilkan tiga kawasan biogeografi utama, yaitu: Paparan Sunda, Wallacea, dan Paparan Sahul. Masing-masing kawasan biogeografi adalah cerminan dari sebaran bentuk kehidupan berdasarkan perbedaan permukaan fisik buminya.
  • Kawasan Paparan Sunda (di bagian barat)
Paparan Sunda adalah lempeng bumi yang bergerak dari Kawasan Oriental (Benua Asia) dan berada di sisi barat Garis Wallace. Garis Wallace merupakan suatu garis khayal pembatas antara dunia flora fauna di Paparan Sunda dan di bagian lebih timur Indonesia. Garis ini bergerak dari utara ke selatan, antara Kalimantan dan Sulawesi, serta antara Bali dan Lombok. Garis ini mengikuti nama biolog Alfred Russel Wallace yang, pada 1858, memperlihatkan bahwa persebaran flora fauna di Sumatera, Kalimantan, Jawa, dan Bali lebih mirip dengan yang ada di daratan Benua Asia.
  • Kawasan Paparan Sahul (di bagian timur)
Paparan Sahul adalah lempeng bumi yang bergerak dari Kawasan Australesia (Benua Australia) dan berada di sisi timur Garis Weber. Garis Weber adalah sebuah garis khayal pembatas antara dunia flora fauna di Paparan Sahul dan di bagian lebih barat Indonesia. Garis ini membujur dari utara ke selatan antara Kepulauan Maluku dan Papua serta antara Nusa Tenggara Timur dan Australia. Garis ini mengikuti nama biolog Max Weber yang, sekitar 1902, memperlihatkan bahwa persebaran flora fauna di kawasan ini lebih serupa dengan yang ada di Benua Australia.
  • Kawasan Wallace / Laut Dalam (di bagian tengah)
Lempeng bumi pinggiran Asia Timur ini bergerak di sela Garis Wallace dan Garis Weber. Kawasan ini mencakup Sulawesi, Kepulauan Sunda Kecil (Nusa Tenggara), dan Kepulauan Maluku. Flora fauna di kawasan ini banyak merupakan jenis-jenis endemik (hanya ditemukan di tempat bersangkutan, tidak ditemukan di bagian lain manapun di dunia). Namun, kawasan ini juga memiliki unsur-unsur baik dari Kawasan Oriental maupun dari Kawasan Australesia. Wallace berpendapat bahwa laut tertutup es pada Zaman Es sehingga tumbuhan dan satwa di Asia dan Australia dapat menyeberang dan berkumpul di Nusantara. Walaupun jenis flora fauna Asia tetap lebih banyak terdapat di bagian barat dan jenis flora fauna Australia di bagian timur, hal ini dikarenakan Kawasan Wallace dulu merupakan palung laut yang sangat dalam sehingga fauna sukar untuk melintasinya dan flora berhenti menyebar.

[sunting] Berdasarkan iklim

Dari letak garis lintangnya, Indonesia memang termasuk daerah beriklim tropis. Namun, posisinya di antara dua benua dan di antara dua samudera membuat iklim kepulauan ini lebih beragam. Berdasarkan perbandingan jumlah bulan kering terhadap jumlah bulan basah per tahun, Indonesia mencakup tiga daerah iklim, yaitu:
  • Daerah tipe iklim A (sangat basah) yang puncak musim hujannya jatuh antara Oktober dan Januari, kadang hingga Februari. Daerah ini mencakup Pulau Sumatera; Kalimantan; bagian barat dan tengah Pulau Jawa; sisi barat Pulau Sulawesi.
  • Daerah tipe iklim B (basah) yang puncak musim hujannya jatuh antara Mei dan Juli, serta Agustus atau September sebagai bulan terkering. Daerah ini mencakup bagian timur Pulau Sulawesi; Maluku; sebagian besar Papua.
  • Daerah tipe iklim C (agak kering) yang lebih sedikit jumlah curah hujannya, sedangkan bulan terkeringnya lebih panjang. Daerah ini mencakup Jawa Timur; sebagian Pulau Madura; Pulau Bali; Nusa Tenggara; bagian paling ujung selatan Papua.
Berdasarkan perbedaan iklim ini, Indonesia memiliki hutan gambut, hutan hujan tropis, dan hutan muson.
Hutan gambut ada di daerah tipe iklim A atau B, yaitu di pantai timur Sumatera, sepanjang pantai dan sungai besar Kalimantan, dan sebagian besar pantai selatan Papua.
Hutan hujan tropis menempati daerah tipe iklim A dan B. Jenis hutan ini menutupi sebagian besar Pulau Sumatera, Kalimantan, Sulawesi, Maluku Utara, dan Papua. Di bagian barat Indonesia, lapisan tajuk tertinggi hutan dipenuhi famili Dipterocarpaceae (terutama genus Shorea, Dipterocarpus, Dryobalanops, dan Hopea). Lapisan tajuk di bawahnya ditempati oleh famili Lauraceae, Myristicaceae, Myrtaceae, dan Guttiferaceae. Di bagian timur, genus utamanya adalah Pometia, Instia, Palaquium, Parinari, Agathis, dan Kalappia.
Hutan muson tumbuh di daerah tipe iklim C atau D, yaitu di Jawa Tengah, Yogyakarta, Jawa Timur, Bali, NTB, sebagian NTT, bagian tenggara Maluku, dan sebagian pantai selatan Irian Jaya. Spesies pohon di hutan ini seperti jati (Tectona grandis), walikukun (Actinophora fragrans), ekaliptus (Eucalyptus alba), cendana (Santalum album), dan kayuputih (Melaleuca leucadendron).

[sunting] Berdasarkan sifat tanahnya

Berdasarkan sifat tanah, jenis hutan di Indonesia mencakup hutan pantai, hutan mangrove, dan hutan rawa.
  • Hutan pantai terdapat sepanjang pantai yang kering, berpasir, dan tidak landai, seperti di pantai selatan Jawa. Spesies pohonnya seperti ketapang (Terminalia catappa), waru (Hibiscus tiliaceus), cemara laut (Casuarina equisetifolia), dan pandan (Pandanus tectorius).
  • Hutan mangrove Indonesia mencapai 776.000 ha dan tersebar di sepanjang pantai utara Jawa, pantai timur Sumatera, sepanjang pantai Kalimantan, dan pantai selatan Papua. Jenis-jenis pohon utamanya berasal dari genus Avicennia, Sonneratia, dan Rhizopheria.
  • Hutan rawa terdapat di hampir semua pulau, terutama Sumatera, Kalimantan, dan Papua. Spesies pohon rawa misalnya adalah nyatoh (Palaquium leiocarpum), kempas (Koompassia spp), dan ramin (Gonystylus spp).

[sunting] Berdasarkan pemanfaatan lahan

Luas hutan Indonesia terus menciut, sebagaimana diperlihatkan oleh tabel berikut: Luas Penetapan Kawasan Hutan oleh Departemen Kehutanan Tahun Luas (Hektar) 1950 162,0 juta 1992 118,7 juta 2003 110,0 juta 2005 93,92 juta
Berdasarkan hasil penafsiran citra satelit, kawasan hutan Indonesia yang mencapai 93,92 juta hektar pada 2005 itu dapat dirinci pemanfaatannya sebagai berikut:
  1. Hutan tetap  : 88,27 juta ha
  2. Hutan konservasi  : 15,37 juta ha
  3. Hutan lindung  : 22,10 juta ha
  4. Hutan produksi terbatas : 18,18 juta ha
  5. Hutan produksi tetap : 20,62 juta ha
  6. Hutan produksi yang dapat dikonversi  : 10,69 juta ha.
  7. Areal Penggunaan Lain (non-kawasan hutan) : 7,96 juta ha.
Lahan hutan terluas ada di Papua (32,36 juta ha), diikuti berturut-turut oleh Kalimantan (28,23 juta ha), Sumatera (14,65 juta ha), Sulawesi (8,87 juta ha), Maluku dan Maluku Utara (4,02 juta ha), Jawa (3,09 juta ha), serta Bali dan Nusa Tenggara (2,7 juta ha).

[sunting] Catatan

Dalam bahasa-bahasa di Indonesia, pengertian hutan juga merujuk kepada aneka hal yang bersifat liar (wild), tumbuh sendiri atau tidak dipelihara (natural), atau untuk menekankan sifat-sifat liar dari sesuatu. Nama-nama hewan yang diimbuhi dengan kata ‘hutan’ menunjukkan pengertian tersebut, misalnya anjing hutan, ayam hutan, babi hutan, kambing hutan, dll.
Demikian pula, sesuatu bidang lahan yang tidak terpelihara atau kurang terpelihara kerap disebut hutan atau menghutan. Berlawanan dengan kebun, yang dipelihara dan diakui pemilikannya.
Hutan disebut juga dengan istilah utan (Jakarta), leuweung (Sunda), alas atau wana (Jawa), alas (Md.), dan lain-lain.

[sunting] Referensi

  1. ^ Imatetani (Juli 2010). Inovasi Lingkungan Hidup Berbasis Pertanian Kehutanan (htm) (dalam Bahasa Indonesia). Rilis pers. Diakses pada 22 Juli 2010.

[sunting] Lihat pula

[sunting] Pranala luar

Pencemaran udara

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Pencemaran udara adalah kehadiran satu atau lebih substansi fisik, kimia, atau biologi di atmosfer dalam jumlah yang dapat membahayakan kesehatan manusia, hewan, dan tumbuhan, mengganggu estetika dan kenyamanan, atau merusak properti.
Pencemaran udara dapat ditimbulkan oleh sumber-sumber alami maupun kegiatan manusia. Beberapa definisi gangguan fisik seperti polusi suara, panas, radiasi atau polusi cahaya dianggap sebagai polusi udara. Sifat alami udara mengakibatkan dampak pencemaran udara dapat bersifat langsung dan lokal, regional, maupun global.

Daftar isi

 [sembunyikan

[sunting] Sumber Polusi Udara

Pencemar udara dibedakan menjadi dua yaitu, pencemar primer dan pencemar sekunder. Pencemar primer adalah substansi pencemar yang ditimbulkan langsung dari sumber pencemaran udara. [Karbon monoksida]adalah sebuah contoh dari pencemar udara primer karena ia merupakan hasil dari pembakaran. Pencemar sekunder adalah substansi pencemar yang terbentuk dari reaksi pencemar-pencemar primer di atmosfer. Pembentukan ozon dalam [smog fotokimia] adalah sebuah contoh dari pencemaran udara sekunder.
Belakangan ini tumbuh keprihatinan akan efek dari emisi polusi udara dalam konteks global dan hubungannya dengan pemanasan global (global warming) yg memengaruhi;
Kegiatan manusia
  • Transportasi
  • Industri
  • Pembangkit listrik
  • Pembakaran (perapian, kompor, furnace,[insinerator]dengan berbagai jenis bahan bakar
  • Gas buang pabrik yang menghasilkan gas berbahaya seperti (CFC)
Sumber alami
Sumber-sumber lain

[sunting] Jenis-jenis pencemar

[sunting] Dampak

[sunting] Dampak kesehatan

Substansi pencemar yang terdapat di udara dapat masuk ke dalam tubuh melalui sistem pernapasan. Jauhnya penetrasi zat pencemar ke dalam tubuh bergantung kepada jenis pencemar. Partikulat berukuran besar dapat tertahan di saluran pernapasan bagian atas, sedangkan partikulat berukuran kecil dan gas dapat mencapai paru-paru. Dari paru-paru, zat pencemar diserap oleh sistem peredaran darah dan menyebar ke seluruh tubuh.
Dampak kesehatan yang paling umum dijumpai adalah ISNA (infeksi saluran napas atas), termasuk di antaranya, asma, bronkitis, dan gangguan pernapasan lainnya. Beberapa zat pencemar dikategorikan sebagai toksik dan karsinogenik.
memperkirakan dampak pencemaran udara di Jakarta yang berkaitan dengan kematian prematur, perawatan rumah sakit, berkurangnya hari kerja efektif, dan ISNA pada tahun 1998 senilai dengan 1,8 trilyun rupiah dan akan meningkat menjadi 4,3 trilyun rupiah di tahun 2015.

[sunting] Dampak terhadap tanaman

Tanaman yang tumbuh di daerah dengan tingkat pencemaran udara tinggi dapat terganggu pertumbuhannya dan rawan penyakit, antara lain klorosis, nekrosis, dan bintik hitam. Partikulat yang terdeposisi di permukaan tanaman dapat menghambat proses fotosintesis.

[sunting] Hujan asam

pH biasa air hujan adalah 5,6 karena adanya CO2 di atmosfer. Pencemar udara seperti SO2 dan NO2 bereaksi dengan air hujan membentuk asam dan menurunkan pH air hujan. Dampak dari hujan asam ini antara lain:
  • Mempengaruhi kualitas air permukaan
  • Merusak tanaman
  • Melarutkan logam-logam berat yang terdapat dalam tanah sehingga memengaruhi kualitas air tanah dan air permukaan
  • Bersifat korosif sehingga merusak material dan bangunan

[sunting] Efek rumah kaca

Efek rumah kaca disebabkan oleh keberadaan CO2, CFC, metana, ozon, dan N2O di lapisan troposfer yang menyerap radiasi panas matahari yang dipantulkan oleh permukaan bumi. Akibatnya panas terperangkap dalam lapisan troposfer dan menimbulkan fenomena pemanasan global.
Dampak dari pemanasan global adalah:
  • Pencairan es di kutub
  • Perubahan iklim regional dan global
  • Perubahan siklus hidup flora dan fauna

[sunting] Kerusakan lapisan ozon

Lapisan ozon yang berada di stratosfer (ketinggian 20-35 km) merupakan pelindung alami bumi yang berfungsi memfilter radiasi ultraviolet B dari matahari. Pembentukan dan penguraian molekul-molekul ozon (O3) terjadi secara alami di stratosfer. Emisi CFC yang mencapai stratosfer dan bersifat sangat stabil menyebabkan laju penguraian molekul-molekul ozon lebih cepat dari pembentukannya, sehingga terbentuk lubang-lubang pada lapisan ozon.

Alam Semesta Kekal

Gagasan yang umum di abad 19 adalah bahwa alam semesta merupakan kumpulan materi berukuran tak hingga yang telah ada sejak dulu kala dan akan terus ada selamanya. Selain meletakkan dasar berpijak bagi paham materialis, pandangan ini menolak keberadaan sang Pencipta dan menyatakan bahwa alam semesta tidak berawal dan tidak berakhir.
Materialisme adalah sistem pemikiran yang meyakini materi sebagai satu-satunya keberadaan yang mutlak dan menolak keberadaan apapun selain materi. Berakar pada kebudayaan Yunani Kuno, dan mendapat penerimaan yang meluas di abad 19, sistem berpikir ini menjadi terkenal dalam bentuk paham Materialisme dialektika Karl Marx.

Para penganut materalisme meyakini model alam semesta tak hingga sebagai dasar berpijak paham ateis mereka. Misalnya, dalam bukunya Principes Fondamentaux de Philosophie, filosof materialis George Politzer mengatakan bahwa "alam semesta bukanlah sesuatu yang diciptakan" dan menambahkan: "Jika ia diciptakan, ia sudah pasti diciptakan oleh Tuhan dengan seketika dan dari ketiadaan".

Ketika Politzer berpendapat bahwa alam semesta tidak diciptakan dari ketiadaan, ia berpijak pada model alam semesta statis abad 19, dan menganggap dirinya sedang mengemukakan sebuah pernyataan ilmiah. Namun, sains dan teknologi yang berkembang di abad 20 akhirnya meruntuhkan gagasan kuno yang dinamakan materialisme ini.

Astronomi Mengatakan: Alam Semesta Diciptakan

Pada tahun 1929, di observatorium Mount Wilson California, ahli astronomi Amerika, Edwin Hubble membuat salah satu penemuan terbesar di sepanjang sejarah astronomi. Ketika mengamati bintang-bintang dengan teleskop raksasa, ia menemukan bahwa mereka memancarkan cahaya merah sesuai dengan jaraknya. Hal ini berarti bahwa bintang-bintang ini "bergerak menjauhi" kita. Sebab, menurut hukum fisika yang diketahui, spektrum dari sumber cahaya yang sedang bergerak mendekati pengamat cenderung ke warna ungu, sedangkan yang menjauhi pengamat cenderung ke warna merah. Selama pengamatan oleh Hubble, cahaya dari bintang-bintang cenderung ke warna merah. Ini berarti bahwa bintang-bintang ini terus-menerus bergerak menjauhi kita.
Jauh sebelumnya, Hubble telah membuat penemuan penting lain. Bintang dan galaksi bergerak tak hanya menjauhi kita, tapi juga menjauhi satu sama lain. Satu-satunya yang dapat disimpulkan dari suatu alam semesta di mana segala sesuatunya bergerak menjauhi satu sama lain adalah bahwa ia terus-menerus "mengembang".

Agar lebih mudah dipahami, alam semesta dapat diumpamakan sebagai permukaan balon yang sedang mengembang. Sebagaimana titik-titik di permukaan balon yang bergerak menjauhi satu sama lain ketika balon membesar, benda-benda di ruang angkasa juga bergerak menjauhi satu sama lain ketika alam semesta terus mengembang.

Sebenarnya, fakta ini secara teoritis telah ditemukan lebih awal. Albert Einstein, yang diakui sebagai ilmuwan terbesar abad 20, berdasarkan perhitungan yang ia buat dalam fisika teori, telah menyimpulkan bahwa alam semesta tidak mungkin statis. Tetapi, ia mendiamkan penemuannya ini, hanya agar tidak bertentangan dengan model alam semesta statis yang diakui luas waktu itu. Di kemudian hari, Einstein menyadari tindakannya ini sebagai 'kesalahan terbesar dalam karirnya'.

Apa arti dari mengembangnya alam semesta? Mengembangnya alam semesta berarti bahwa jika alam semesta dapat bergerak mundur ke masa lampau, maka ia akan terbukti berasal dari satu titik tunggal. Perhitungan menunjukkan bahwa 'titik tunggal' ini yang berisi semua materi alam semesta haruslah memiliki 'volume nol', dan 'kepadatan tak hingga'. Alam semesta telah terbentuk melalui ledakan titik tunggal bervolume nol ini.

Ledakan raksasa yang menandai permulaan alam semesta ini dinamakan 'Big Bang', dan teorinya dikenal dengan nama tersebut. Perlu dikemukakan bahwa 'volume nol' merupakan pernyataan teoritis yang digunakan untuk memudahkan pemahaman. Ilmu pengetahuan dapat mendefinisikan konsep 'ketiadaan', yang berada di luar batas pemahaman manusia, hanya dengan menyatakannya sebagai 'titik bervolume nol'. Sebenarnya, 'sebuah titik tak bervolume' berarti 'ketiadaan'. Demikianlah alam semesta muncul menjadi ada dari ketiadaan. Dengan kata lain, ia telah diciptakan. Fakta bahwa alam ini diciptakan, yang baru ditemukan fisika modern pada abad 20, telah dinyatakan dalam Alqur'an 14 abad lampau: "Dia Pencipta langit dan bumi" (QS. Al-An'aam, 6: 101)

Teori Big Bang menunjukkan bahwa semua benda di alam semesta pada awalnya adalah satu wujud, dan kemudian terpisah-pisah. Ini diartikan bahwa keseluruhan materi diciptakan melalui Big Bang atau ledakan raksasa dari satu titik tunggal, dan membentuk alam semesta kini dengan cara pemisahan satu dari yang lain.

Big Bang, Fakta Menjijikkan Bagi Kaum Materialis

Big Bang merupakan petunjuk nyata bahwa alam semesta telah 'diciptakan dari ketiadaan', dengan kata lain ia diciptakan oleh Allah. Karena alasan ini, para astronom yang meyakini paham materialis senantiasa menolak Big Bang dan mempertahankan gagasan alam semesta tak hingga. Alasan penolakan ini terungkap dalam perkataan Arthur Eddington, salah seorang fisikawan materialis terkenal yang mengatakan: "Secara filosofis, gagasan tentang permulaan tiba-tiba dari tatanan Alam yang ada saat ini sungguh menjijikkan bagi saya".
Seorang materialis lain, astronom terkemuka asal Inggris, Sir Fred Hoyle adalah termasuk yang paling merasa terganggu oleh teori Big Bang. Di pertengahan abad 20, Hoyle mengemukakan suatu teori yang disebut steady-state yang mirip dengan teori 'alam semesta tetap' di abad 19. Teori steady-state menyatakan bahwa alam semesta berukuran tak hingga dan kekal sepanjang masa. Dengan tujuan mempertahankan paham materialis, teori ini sama sekali berseberangan dengan teori Big Bang, yang mengatakan bahwa alam semesta memiliki permulaan. Mereka yang mempertahankan teori steady-state telah lama menentang teori Big Bang. Namun, ilmu pengetahuan justru meruntuhkan pandangan mereka.

Pada tahun 1948, Gerge Gamov muncul dengan gagasan lain tentang Big Bang. Ia mengatakan bahwa setelah pembentukan alam semesta melalui ledakan raksasa, sisa radiasi yang ditinggalkan oleh ledakan ini haruslah ada di alam. Selain itu, radiasi ini haruslah tersebar merata di segenap penjuru alam semesta. Bukti yang 'seharusnya ada' ini pada akhirnya diketemukan. Pada tahun 1965, dua peneliti bernama Arno Penziaz dan Robert Wilson menemukan gelombang ini tanpa sengaja. Radiasi ini, yang disebut 'radiasi latar kosmis', tidak terlihat memancar dari satu sumber tertentu, akan tetapi meliputi keseluruhan ruang angkasa. Demikianlah, diketahui bahwa radiasi ini adalah sisa radiasi peninggalan dari tahapan awal peristiwa Big Bang. Penzias dan Wilson dianugerahi hadiah Nobel untuk penemuan mereka.

Pada tahun 1989, NASA mengirimkan satelit Cosmic Background Explorer. COBE ke ruang angkasa untuk melakukan penelitian tentang radiasi latar kosmis. Hanya perlu 8 menit bagi COBE untuk membuktikan perhitungan Penziaz dan Wilson. COBE telah menemukan sisa ledakan raksasa yang telah terjadi di awal pembentukan alam semesta. Dinyatakan sebagai penemuan astronomi terbesar sepanjang masa, penemuan ini dengan jelas membuktikan teori Big Bang.

Bukti penting lain bagi Big Bang adalah jumlah hidrogen dan helium di ruang angkasa. Dalam berbagai penelitian, diketahui bahwa konsentrasi hidrogen-helium di alam semesta bersesuaian dengan perhitungan teoritis konsentrasi hidrogen-helium sisa peninggalan peristiwa Big Bang. Jika alam semesta tak memiliki permulaan dan jika ia telah ada sejak dulu kala, maka unsur hidrogen ini seharusnya telah habis sama sekali dan berubah menjadi helium.

Segala bukti meyakinkan ini menyebabkan teori Big Bang diterima oleh masyarakat ilmiah. Model Big Bang adalah titik terakhir yang dicapai ilmu pengetahuan tentang asal muasal alam semesta. Begitulah, alam semesta ini telah diciptakan oleh Allah Yang Maha Perkasa dengan sempurna tanpa cacat:

Yang telah menciptakan tujuh langit berlapis-lapis. Kamu sekali-kali tidak melihat pada ciptaan Tuhan Yang Maha Pemurah sesuatu yang tidak seimbang. Maka lihtatlah berulang-ulang, adakah kamu lihat sesuatu yang tidak seimbang. (QS. Al-Mulk, 67:3)

A. TERBENTUKNYA ALAM SEMESTA

1. Teori Ledakan Besar (Big-Bang Theory)
Teori Big Bang yaitu teori yang bisa diterima secara ilmiah sekarang untuk menjelaskan asal mula terbentuknya alam semesta (universe).Teori ini berbunyi:
“ Alam semesta diciptakan kira-kira 15.000.000.000 (lima belas milyar) tahun yang lalu,kejadiannya berawal dari meledaknya atom prima atau atom awal (Primeval Atom). Ledakan itu sangat besar dan dasyat yang menyebabkan berhamburannya seluruh isi (Materi dan energi)atom prima itu ke segala arah.”
Dengan dasar teori Big Bang itu, para ahli sekarang berhasil mereka ulang pembentukan alam semesta dari waktu ke waktu, dimulai dari pristiwa Big Bang bahkan saat ini mereka dapat memperkirakan bagaimana bentuk alam semesta ini beberapa abad nanti, contohnya jika Galaksi Bimasakti (Milkyway) tempat kita berpijak dan galaksi tetangga yang paling dekat yaitu Galaksi Andromeda akan saling bergerak mendekat dan suatu saat mereka akan bertabrakan.
2. Proses Terbentuknya Alam Semesta
Setelah terjadinya ledakan (big Bang), terjadilah semacam bencana alam semesta (cosmic cataclysm). Alam semesta dipenuhi oleh bola-bola api yang sangat panas dan padat. Dari bola-bola api inilah kemudian terbentuk partikel-partikel dasar dan muatan-muatan energi, dari muatan-muatan energi ini kemudian terbentuk daya-daya kekuatan di alam semesta. Daya kekuatan alam yang diperkirakan pertama kali terbentuk adalah daya gravitasi, kemudian daya nuklir serta daya electromagnetis.

Partikel-partikel dasar yaitu elektron, photon, neutron dan lain-lain saling bertubrukan untuk kemudian membentuk proton dan neutron. Selama masa ini sebagian besar energi masih berbentuk radiasi (percikan-percikan cahaya dari bola-bola api).

Alam semesta terus mengembang dan perlahan-lahan mulai mendingin. Pada tahap ini, inti atom hidrogen, helium dan litium mulai membentuk. Tahap selanjutnya alam semesta mulai memasuki tahap suhu yang cukup dingin sehingga partikel-partikel elektron yang bermuatan negatif dapat berkait dan menyatu dengan inti-inti atom hidrogen dan helium yang bermuatan positif untuk kemudian membentuk atom-atom yang netral.

Karena alam semesta terus membesar, kepadatannya otomatis semakin berkurang dan suhunya juga semakin mendingin.

Proses pengembangan alam semesta terus berlanjut dengan tingkat kecepatan yang tinggi. Daya gravitasi mulai mempengaruhi tingkat kepadatan gas-gas yang terbentuk akibat Big Bang, sehingga menciptakan gumpalan-gumpalan awan gas. Saat gumpalan-gumpalan ini semakin memadat, inti gumpalan gas tersebut juga bertambah padat berlipat-lipat dengan suhu yang juga terus meningkat panas sampai akhirnya menyala sebagai bentuk awal sebuah bintang. Saat semua kantong-kantong gas mengalami proses serupa maka kelompok bintang-bintang muda ini membentuk menjadi sebuah gugusan bintang (galaksi). Seluruh proses di atas, dari Big Bang hingga terbentuknya planet, bintang serta galaksi berlangsung dalam kurun waktu milyaran tahun.Seperti halnya proses pembentukan bintang-bintang yang lain, bintang kita, yang kita kenal dengan nama Matahati (sun) juga terbentuk dari gumpalan atau kantong awan gas. Gumpalan awan gas yang berbentuk piringan yang sangat luas ini beterbangan berputar-putar. Bagian tengahnya mulai padat dan memanas untuk kemudian menyala menjadi bintang sementara materi sisa disekelilingnya saling bertumbukan, menyatu dan menggumpal membentuk planet-planet, bulan-bulan dan asteroid. Bumi yang merupakan bagian kecil dari material yang menggumpal ini menjadi planet ke tiga. Dengan suhunya yang relatif lebih dingin, memungkinkan terbentuknya atmosfer pendukung kehidupan.
3. Pendukung Teori Big Bang
Teori Big Bang ini diajukan oleh Georges Lemaitre pada tahun 1927, dia adalah seorang pendeta sekaligus ahli matematika dari Belgia.

Bertahun-tahun kemudian, Edwin Hubble menetapkan teori bahwa : Galaksi-galaksi di alam semesta ini semuanya bergerak menjauhi pusat alam semesta dengan kecepatan yang sangat tinggi atau dapat dikatakan bahwa alam semesta ini mengembang kesegala arah. Apa yang dikemukakan Hubble ini menguatkan teori Big Bang-nya Lemaitre.

Teori Big Bang juga memprediksikan bahwa ledakan Big Bang telah meninggalkan seberkas cahaya radiasi (“background” radiation) dan pada tahun 1964, Arno Penzias dan Robert Wilson berhasil menemukan radiasi pertama ini, persis seperti yang diprediksikan dalam teori Big Bang.
4. Terbentuknya Materi Padat
Setelah big bang sampai 300.000 tahun kemudian, bentuk materi masih berupa gas. Dari gumpalan-gumpalan gas ini selanjutnya bintang-bintang berukuran sangat besar mulai terbentuk tetapi hanya berusia pendek karena kemudian meledak (supernova). Setelah meledak gas-gasnya menggumpal lagi, menjadi padat, kemudian menyala dan terbentuk bintang-bintang lagi yang berukuran lebih kecil, meledak kembali, demikian terus menerus untuk beberapa kali sampai akhirnya terbentuk materi-materi berat di inti bintang-bintang yang meledak. Materi-materi padat inilah yang kemudian membentuk benda-benda di alam semesta seperti yang sekarang ini seperti planet-planet dll bahkan unsur-unsur pembentuk tubuh kita sebagian besar dari materi-materi berat ini.

Jadi, materi-materi padat dibentuk di dalam inti bintang melalui proses fusi nuklir (peleburan / penyatuan materi nuklir) dan dimulai dari materi-materi ringan seperti hidrogen dan helium. Sementara materi-materi yang lebih berat seperti karbon, oksigen, nitrogen hingga besi dibentuk di dalam inti bintang karena memang suhu dan tekanannya lebih memungkinkan. Materi-materi ini terlempar ke luar angkasa saat bintang-bintang tersebut meledak.
B. HIPOTESIS “KEADAAN-STABIL”
Teori Dentuman Besar dengan cepat diterima luas oleh dunia ilmiah karena bukti-bukti yang jelas. Namun, para ahli astronomi yang memihak materialisme dan setia pada gagasan alam semesta tanpa batas yang dituntut paham ini menentang Dentuman Besar dalam usaha mereka mempertahankan doktrin fundamental ideologi mereka. Alasan mereka dijelaskan oleh ahli astronomi Inggris, Arthur Eddington, yang berkata, “Secara filosofis, pendapat tentang permulaan yang tiba-tiba dari keter-aturan alam sekarang ini bertentangan denganku.

Ahli astronomi lain yang menentang teori Dentuman Besar adalah Fred Hoyle. Sekitar pertengahan abad ke-20 dia mengemukakan sebuah model baru yang disebutnya “keadaan-stabil”, yang tak lebih suatu per-panjangan gagasan abad ke-19 tentang alam semesta tanpa batas. Dengan menerima bukti-bukti yang tidak bisa disangkal bahwa jagat raya mengembang, dia berpendapat bahwa alam semesta tak terbatas, baik dalam dimensi maupun waktu. Menurut model ini, ketika jagat raya mengembang, materi baru terus-menerus muncul dengan sendirinya dalam jumlah yang tepat sehingga alam semesta tetap berada dalam “keadaan-stabil”. Dengan satu tujuan jelas mendukung dogma “materi sudah ada sejak waktu tak terbatas”, yang merupakan basis filsafat mate-rialis, teori ini mutlak bertentangan dengan “teori Dentuman Besar”, yang menyatakan bahwa alam semesta mempunyai permulaan. Pendukung teori keadaan-stabil Hoyle tetap berkeras menentang Dentuman Besar selama bertahun-tahun. Namun, sains menyangkal mereka.
C. EVOLUSI ALAM SEMESTA
Naluri manusia selalu ingin mengetahui asal usul sesuatu, termasuk asal-usul alam semesta. Berbagai hasil pengamatan dianalisis dengan dukungan teori-teori fisika untuk mengungkapkan asal-usul alam semesta. Teori yang kini diyakini bukti-buktinya menyatakan bahwa alam semesta ini bermula dari ledakan besar (Big Bang) sekitar 13,7 milyar tahun yang lalu. Semua materi dan energi yang kini ada di alam terkumpul dalam satu titik tak berdimensi yang berkerapatan tak berhingga. Tetapi ini jangan dibayangkan seolah olah titik itu berada di suatu tempat di alam yang kita kenal sekarang ini. Yang benar, baik materi, energi, maupun ruang yang ditempatinya seluruhnya bervolume amat kecil, hanya satu titik tak berdimensi.

Tidak ada suatu titik pun di alam semesta yang dapat dianggap sebagai pusat ledakan. Dengan kata lain ledakan besar alam semesta tidak seperti ledakan bom yang meledak dari satu titik ke segenap penjuru. Hal ini karena pada hakekatnya seluruh alam turut serta dalam ledakan itu. Lebih tepatnya, seluruh alam semesta mengembang tiba tiba secara serentak. Ketika itulah mulainya terbentuk materi, ruang, dan waktu.
Materi alam semesta yang pertama terbentuk adalah hidrogen yang menjadi bahan dasar bintang dan galaksi generasi pertama. Dari reaksi fusi nuklir di dalam bintang terbentuklah unsur-unsur berat seperti karbon, oksigen, nitrogen, dan besi. Kandungan unsur-unsur berat dalam komposisi materi bintang merupakan salah satu “akte” lahir bintang. Bintang-bintang yang mengandung banyak unsur berat berarti bintang itu “generasi muda” yang memanfaatkan materi-materi sisa ledakan bintang-bintang tua. Materi pembentuk bumi pun diyakini berasal dari debu dan gas antar bintang yang berasal dari ledakan bintang di masa lalu. Jadi, seisi alam ini memang berasal dari satu kesatuan.

Bukti-bukti pengamatan menunjukkan bahwa alam semesta mengembang. Spektrum galaksi galaksi yang jauh sebagian besar menunjukkan bergeser ke arah merah yang dikenal sebagai red shift (panjang gelombangnya bertambah karena alam mengembang). Ini merupakan petunjuk bahwa galaksi galaksi itu saling menjauh. Sebenarnya yang terjadi adalah pengembangan ruang. Galaksi galaksi itu (dalam ukuran alam semesta hanya dianggap seperti partikel partikel) dapat dikatakan menempati kedudukan yang tetap dalam ruang, dan ruang itu sendiri yang sedang berekspansi. Kita tidak mengenal adanya ruang di luar alam ini. Oleh karenanya kita tidak bisa menanyakan ada apa di luar semesta ini.

Secara sederhana, keadaan awal alam semesta dan pengembangannya itu dapat diilustrasikan dengan pembuatan roti. Materi pembentuk roti itu semula terkumpul dalam gumpalan kecil. Kemudian mulai mengembang. Dengan kata lain “ruang” roti sedang mengembang. Butir butir partikel di dalam roti itu (analog dengan galaksi di alam semesta) saling menjauh sejalan dengan pengembangan roti itu (analog dengan alam).

Dalam ilustrasi tersebut, kita berada di salah satu partikel di dalam roti itu. Di luar roti, kita tidak mengenal adanya ruang lain, karena pengetahuan kita, yang berada di dalam roti itu, terbatas hanya pada ruang roti itu sendiri. Demikian pulalah, kita tidak mengenal alam fisik lain di luar dimensi “ruang waktu” yang kita kenal.

Bukti lain adanya pengembangan alam semesta di peroleh dari pengamatan radio astronomi. Radiasi yang terpancar pada saat awal pembentukan itu masih berupa cahaya. Namun karena alam semesta terus mengembang, panjang gelombang radiasi itu pun makin panjang, menjadi gelombang radio. Kini radiasi awal itu dikenal sebagai radiasi latar belakang kosmik (cosmic background radiation) yang dapat dideteksi dengan teleskop radio.







D. GALAKSI
Berdasarkan Hipotesis Fowler, galaksi berawal dari suatu kabut gas pijar dengan massa yang sangat besar. Kabut ini kemudian mengadakan kontraksi dan kondensasi sambil terus berputar pada sumbunya. Ada massa yang tertinggal, yakni pada bagian luar dari kabut pijar tadi. Massa itu juga mengadakan kontraksi dan kondensasi maka terbentuklah gumpalan gas pijar yaitu bintang-bintang. Bagi yang bermassa besar masih berupa kabut bintang. Dengan cara yang sama, bagian luar bintang yang tertinggal juga mengadakan kondensasi sehingga terbentuklah planet. Demikian juga bagian planet membentuk satelit bulan.

Bima Sakti atau Milky Way, berbentuk seperti kue cucur. Matahari kita terletak kira-kira pada jarak 2/3, dihitung dari pusat galaksi itu sampai ke tepiannya.

Tata surya terdiri dari matahari sebagai pusat, benda-benda lain seperti planet, satelit, meteor-meteor, komet-komet, debu dan gas antarplanet beredar mengelilinginya. Teori-teori yang mendukung terbentuknya tata surya, antara lain Hipotesis Nebular, Hipotesis Planettesimal, Teori Tidal, Teori Bintang Kembar, Teori Creatio Continua dan Teori G.P. Kuiper.
E. SUSUNAN TATA SURYA
Matahari kita dikelilingi oleh sembilan planet. Empat buah yang dekat dengan Matahari disebut planet dalam, yaitu Merkurius, Venus, Bumi dan Mars. Lima lainnya yang disebut planet luar berada relatif jauh dengan Matahari dan umumnya besar-besar. Mereka adalah Jupiter, Saturnus, Uranus, Neptunus, dan Pluto.

Anggota. tata. surya yang lain adalah:
1. Asteroida, berbentuk semacam planet tetapi sangat kecil, bergaris tengah 500 mil, jumlahnya lebih dari 2.000 buah dan terletak antara Mars dan Jupiter.

2. Komet atau bintang berekor. Garis edarnya eksentrik, perihelionnya sangat dekat dengan matahari, sedangkan aphelionnya sangat jauh, berupa bola gas pijar seperti matahari.

3. Meteor, merupakan batuan dingin yang terjadi akibat gaya tarik bumi sehingga masuk ke atmosfer menjadi pijar karena bergesekan dengan atmosfer.






F. DESKRIPSI DAN MODEL ALAM SEMESTA
Kesan umum luas dan megahnya alam semesta diperoleh penghuni Bumi dengan memandang langit malam yang cerah tanpa cahaya Bulan. Langit tampak penuh taburan bintang yang seolah tak terhitung jumlahnya. Struktur dan luas alam semesta sangat sukar dibayangkan manusia, dan progres persepsi dan rasionalitas manusia tentang itu memerlukan waktu berabad-abad.

Deskripsi pemandangan alam semesta pun beragam. Dulu alam semesta dimodelkan sebagai ruang berukuran jauh lebih kecil dari realitas seharusnya. Ukuran diameter Bumi (12.500 km) baru diketahui pada abad ke- 3 (oleh Eratosthenes), jarak ke Bulan (384.400 km) abad ke-16 ( Tycho Brahe, 1588), jarak ke Matahari (sekitar 150 juta km) abad ke-17 (Cassini, 1672), jarak bintang 61 Cygni abad ke-19 , jarak ke pusat Galaksi abad ke-20 (Shapley, 1918), jarak ke galaksi-luar (1929), Quasar dan Big Bang (1965). Perjalanan panjang ini terus berlanjut antargenerasi.

Benda langit yang terdekat dengan bumi adalah bulan. Gaya gravitasi bulan menggerakkan pasang surut air laut di bumi, tak henti-hentinya selama bermiliar tahun. Karena periode orbit dan rotasi Bulan sama, manusia di Bumi tak pernah bisa melihat salah satu sisi permukaan Bulan tanpa bantuan teknologi untuk mengorbit Bulan. Rahasia sisi Bulan lainnya, baru didapat dengan penerbangan Luna 3 pada tahun 1959.

Pada siang hari, pemandangan langit sebatas langit biru dan matahari atau bulan kesiangan; sedang di saat fajar dan senja, langit merah di kaki langit timur dan barat. Interaksi cahaya matahari dengan angkasa Bumi melukiskan suasana langit yang berwarna warni.

Matahari sendiri adalah satu di antara beragam bintang di Galaksi. Ada bintang yang lebih panas dari Matahari (suhu permukaan Matahari 5.800o K), seperti bintang panas (bisa mencapai 50.000oK) yang memancarkan lebih banyak cahaya ultraviolet-cahaya yang berbahaya bagi kehidupan. Ada bintang yang lebih dingin, lebih banyak memancarkan cahaya merah dan inframerah dibandingkan cahaya tampak yang banyak dipergunakan manusia.

Manusia bisa mencapai batas-batas pengetahuan alam semesta yang luas, mengenal ciptaan Allah yang tidak pernah dikenali di muka bumi seperti Black Hole, bintang Netron, Pulsar, bintang mati, ledakan bintang Nova atau Supernova, ledakan inti galaksi dan sebagainya. Akan tetapi, berbagai fenomena yang sangat dahsyat itu tak mungkin didekatkan dengan mahluk hidup yang rentan terhadap kerusakan. Walau demikian, ada jalan bagi yang ingin bersungguh-sungguh menekuninya.





G. BUMI DAN PLANET-PLANET LAINNYA

Dimulai dari planet Bumi: sebuah wahana yang ditumpangi oleh bermiliar manusia. Kecerdasan spiritual manusialah yang akan memberi makna perjalanan di alam semesta ini; perjalanan antargenerasi selama bermiliar tahun tanpa tujuan akhir yang diketahui pasti, yang gratis dan tak berujung, hingga waktu kehancurannya tiba.

Namun Bumi masih terlalu kecil dibandingkan Matahari, sebuah bola gas pijar raksasa, lebih dari 1.250.000 kali ukuran Bumi dan bermassa 100.000 kali lebih besar. Bumi yang tak berdaya, tertambat oleh gravitasi, terseret Matahari mengelilingi pusat Galaksi lebih dari 200 juta tahun untuk sekali edar penuh. (Lalu apa rencana secercah kehidupan kita dalam pengembaraan panjang ini? Sangat sayang bila kita tidak sempat melihat kosmos hari ini. Sangat sayang kita tidak berencana sujud dan berserah kepada Tuhan Yang Mahakuasa.)

Pengiring Matahari lainnya adalah planet Merkurius, Venus, Mars, Jupiter, Saturnus, Uranus, Neptunus, Pluto, asteroid, komet dan sebagainya. Ragam wahana dalam tata surya itu berupa sosok bola gas, bola beku, karang tandus yang sangat panas; semuanya tak terpilih seperti planet Bumi. (Lalu, mengapa wahana yang tersebar di alam semesta yang sangat luas itu tak semuanya mudah atau layak dihuni oleh kehidupan?)

Putaran demi putaran waktu berlalu, kehancuran wahana bermiliar manusia akan menghampiri perlahan tapi pasti. Namun, berbagai pertanyaan manusia tentang misteri alam semesta masih belum atau tak berjawab. Berbagai upaya rasionalitas manusia telah dikerahkan dan pengetahuan bertambah, namun misteri alam semesta itu terus menjadi warisan bagi generasi berikutnya.

Penjelajahan akal manusia mendapatkan fakta-fakta penyusun alam semesta, mulai dari dunia atom, planet, tata surya, hingga galaksi dan ruang alam semesta yang berbatas galaksi-galaksi muda. Dengan itu, pengetahuan manusia merentang dalam dimensi panjang 10-13 hingga 1026 meter, yang merupakan batas fakta-fakta yang dapat diperoleh dalam dunia sains. Pada abad ke-21 manusia masih berambisi untuk menyelami dunia 10-35 meter (skala panjang Planck) atau 10-20 kali lebih kecil dari penemuan skala atom pada dekade pertama abad ke-20. Begitu pula dimensi lainnya seperti waktu, energi, massa, rentangnya meluas dari yang lebih kecil dan lebih besar.

Tentang rentang waktu alam semesta, manusia mendefinisikan berbagai zaman (dan zaman transisi di antaranya): Zaman Primordial, ketika usia alam semesta antara 10-50 hingga 105 tahun, Zaman Bintang, (106 – 1014 tahun), Zaman Materi Terdegenerasi, (1015 – 1039 tahun), Zaman Black Hole, (1040 – 10100 tahun), Zaman Gelap ketika alam semesta menghampiri kehancurannya dan Zaman Kehancuran Alam Semesta, ketika materi meluruh. Tanpa fakta-fakta dan ilmu yang diketahui manusia (atas izin Allah), akhirnya manusia hanya bisa berspekulasi dan tak bisa mendefenisikan berbagai keadaan, misalnya sebelum kelahiran alam semesta dan setelah kehancuran.
Penjelajahan akal manusia bisa menggapai penaksiran hal-hal berikut: jumlah partikel (di Matahari 1060 atau di Bumi 1050), energi ikat (antara Bumi dan Matahari sebesar 1033 Joule), energi radiasi matahari sebesar 1026 watt, energi Matahari yang diterima Bumi sebesar 1022 Joule, energi yang diperlukan manusia per tahun sebesar 1020 Joule, energi penggabungan inti atom, fissi 1 mol Uranium sebesar 1013 Joule, energi yang dihasilkan 1 kg bensin sebesar 108 Joule. Sebuah anugerah yang besar bagi manusia, walaupun melalui proses yang panjang.
.